Telegram Group & Telegram Channel
В чём разница между MCAR, MAR и MNAR

Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.

🔍 MCAR (Missing Completely at Random)
Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.

📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи.
Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.

🔍 MAR (Missing At Random)
Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.

📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть.
Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.

🔍 MNAR (Missing Not At Random)
Пропуски зависят от самого значения, которое пропущено.
То есть в данных есть систематическая причина, скрытая внутри пропуска.


📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий.
Что делать: здесь простые методы не помогут. Часто требуется:
Моделировать механизм пропуска явно.
Включать индикаторы пропусков как отдельные признаки.
Использовать экспертные знания или специализированные байесовские подходы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/979
Create:
Last Update:

В чём разница между MCAR, MAR и MNAR

Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.

🔍 MCAR (Missing Completely at Random)
Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.

📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи.
Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.

🔍 MAR (Missing At Random)
Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.

📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть.
Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.

🔍 MNAR (Missing Not At Random)
Пропуски зависят от самого значения, которое пропущено.
То есть в данных есть систематическая причина, скрытая внутри пропуска.


📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий.
Что делать: здесь простые методы не помогут. Часто требуется:
Моделировать механизм пропуска явно.
Включать индикаторы пропусков как отдельные признаки.
Использовать экспертные знания или специализированные байесовские подходы.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/979

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA